Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 45, 2015 - Issue 4
437
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Reactive metabolite activation by CYP2C19-mediated rhein hepatotoxicity

, , , , , , , , , & show all
Pages 361-372 | Received 25 Sep 2014, Accepted 03 Nov 2014, Published online: 19 Nov 2014
 

Abstract

1. Rhein, an active ingredient in the root of rhubarb, is used for its beneficial effects in a variety of clinical applications including the treatment of osteoarthritis and diabetic nephropathy. However, its hepatotoxicity has been reported in recent years. Rhein belongs to the conjugate structure which could be activated to reactive metabolites (RMs) inducing side-effects. This study is to explore the relationship between RMs and hepatotoxicity.

2. Based on the early detection of RMs, we have established a series of key technologies to research rhein hepatotoxicity mechanism: IC50 shift experiments and reduced glutathione (GSH) trapping experiment are adopted to identify RMs. The model of low activity of CYP450 enzymes (CYPs) in primary rat hepatocyte is constructed to analyze the relationship between the primary metabolic enzyme and hepatotoxicity of rhein better.

3. The IC50 shift value for CYP2C19 is 1.989, it suggests that CYP2C19 could activate rhein to RM. The structure of RM is epoxide intermediate. Besides, it is found that CYP2C19 is a primary metabolic enzyme for rhein. In the cytotoxicity assay, it is reported that rhein could cause mitochondrial dysfunction. Furthermore, mitochondrial membrane potential (Δψm) and AST levels could be restored by adding inhibitor of CYP2C19 together with rhein, which further shows that CYP2C19 could mediate the hepatotoxicity of rhein.

4. We put forward the possible mechanism that reactive metabolite activation by CYP2C19 mediated rhein hepatotoxicity, it provides important information on predicting in vivo drug-induced liver injury (DILI).

Declaration of interest

The authors declare that they have no conflicts of interest. This study was supported by National Natural Science Foundation of China [NSFC, Nos. 81373890 and 81430096]; Research Fund of No. CXJJ2013C16; The Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT0973).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.