Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 46, 2016 - Issue 1
785
Views
30
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: metabolite elucidation and main contributions from CYP1A2 and UGT1A1

, , , &
Pages 1-13 | Received 28 Mar 2015, Accepted 30 Apr 2015, Published online: 11 Jun 2015
 

Abstract

1. Niclosamide is an old anthelmintic drug that shows potential in fighting against cancers. Here, we characterized the metabolism of niclosamide by cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) using human liver microsomes (HLM) and expressed enzymes.

2. NADPH-supplemented HLM (and liver microsomes from various animal species) generated one hydroxylated metabolite (M1) from niclosamide; and UDPGA-supplemented liver microsomes generated one mono-O-glucuronide (M2). The chemical structures of M1 (3-hydroxy niclosamide) and M2 (niclosamide-2-O-glucuronide) were determined through LC–MS/MS and/or NMR analyses.

3. Reaction phenotyping revealed that CYP1A2 was the main enzyme responsible for M1 formation. The important role of CYP1A2 in niclosamide metabolism was further confirmed by activity correlation analyses as well as inhibition experiments using specific inhibitors.

4. Although seven UGT enzymes were able to catalyze glucuronidation of niclosamide, UGT1A1 and 1A3 were the enzymes showed the highest metabolic activities. Activity correlation analyses demonstrated that UGT1A1 played a predominant role in hepatic glucuronidation of niclosamide, whereas the role of UGT1A3 was negligible.

5. In conclusion, niclosamide was subjected to efficient metabolic reactions hydroxylation and glucuronidation, wherein CYP1A2 and UGT1A1 were the main contributing enzymes, respectively.

Declaration of interest

This work was supported by the National Natural Science Foundation of China (No. 81373496), the Program for Pearl River New Stars of Science and Technology in Guangzhou (No. 2014059), and the Doctoral Fund of Ministry of Education of China (20134401120014). The authors report no conflict of interest.

Supplementary material available online

Supplementary Tables S1-S3.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.