Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 46, 2016 - Issue 10
264
Views
13
CrossRef citations to date
0
Altmetric
Clinical Pharmacokinetics and Metabolism

Metabolic profile of Fructus Gardeniae in human plasma and urine using ultra high-performance liquid chromatography coupled with high-resolution LTQ-orbitrap mass spectrometry

, , , &
Pages 901-912 | Received 06 Nov 2015, Accepted 13 Dec 2015, Published online: 10 Jan 2016
 

Abstract

1. In China, Fructus Gardeniae was used as a traditional Chinese medicine (TCM) with a wide array of biological activities. The bioactive components identified in Fructus Gardeniae mainly included iridoids, flavonids, pigments, and so on. Among them, iridoids were regarded as important compounds in Fructus Gardeniae. Though analyses of the constituents in biological samples after oral administration of Fructus Gardeniae effective fraction or its active compounds have been reported, few efforts have been made to investigate the metabolic profile of Fructus Gardeniae in humans. In this study, the constituents and metabolites of Fructus Gardeniae in human blood and urine after oral administration of Fructus Gardeniae were investigated using ultra high-performance liquid chromatography (UHPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometery.

2. Totally, 14 constituents (two parent compounds and 12 metabolites) of Fructus Gardeniae were identified in human plasma and urine either by comparing the retention time and mass spectrometry data with that of reference compounds or by the accurate high-resolution MS/MS data of the chemicals. The compounds identified were mainly iridoid glycosides such as geniposide and the derivatives of genipin-O-glucuronide. Among them, 11 metabolites were detected in human plasma and urine while the other three metabolites including geniposidic acid (M1), demethylation derivative of genipin-O-glucuronide (M2), and dehydration product of mono-hydroxylated genipin-O-glucuronide (M9) were only discovered in human urine. Further, the possible metabolic pathways of Fructus Gardeniae in vivo were proposed and the peak area–time curve of the most abundant metabolite genipin-O-glucuronide (M13) in human plasma after oral administration of Fructus Gardeniae was depicted. The results suggested that a metabolic difference existed between rats and humans.

3. The results obtained in the present research would provide basic information to understand the metabolic profile of Fructus Gardeniae in humans and explore the chemicals responsible for the hepatotoxicity of Fructus Gardeniae in vivo. Moreover, it would be beneficial for us to further study the pharmacokinetic behavior of Fructus Gardeniae in humans systematically.

Acknowledgements

The authors thank Qing-Yu Han for the experiment design and Zhi-Qiang Han for the metabolite identification and material supply.

Declaration of interest

The authors report that they have no conflicts of interest. The work was aided financially by the Mongolian medicinal standardized projects of people's government of the Inner Mongolia autonomous region (No. 2010BZH12B).

Supplementary material available online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.