209
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Dose dependent cytotoxicity of pranoprofen in cultured human corneal endothelial cells by inducing apoptosis

, , , , , & show all
Pages 16-21 | Received 16 Mar 2013, Accepted 18 Feb 2014, Published online: 18 Mar 2014
 

Abstract

Pranoprofen (PPF), a non-steroidal anti-inflammatory drugs (NSAIDs), is often used in keratitis treatment in clinic. Several studies have assessed in vitro the cytotoxicity of topical NSAIDs to corneal epithelial cells due to its importance for predicting human corneal toxicity. Damage by cytotoxic drugs can result in excessive loss of human corneal endothelial (HCE) cells which lead to decompensation of the endothelium and eventual loss of visual acuity. However, the endothelial cytotoxicity of PPF has not yet been reported using an in vitro model of HCE cells. This study assessed the cytotoxicity of PPF to HCE cells and its underlying mechanism. Cellular viability was determined using inverted phase contrast light microscopy, and plasma membrane permeability, genomic DNA fragmentation, and ultrastructure were detected by acridine orange/ethidium bromide staining, DNA agarose gel electrophoresis, and transmission electron microscopy (TEM), respectively. The results on cellular viability showed that PPF at concentrations ranging from 0.0625 to 1.0 g/l had poignant cytotoxicity to HCE cells, and the extent of its cytotoxicity was dose- and time-dependent. Further characterization indicated that PPF induced plasma membrane permeability elevation, DNA fragmentation, and apoptotic body formation, proving its apoptosis inducing effect on HCE cells. In conclusion, PPF above 0.0625 g/l has poignant cytotoxicity on HCE cells in vitro by inducing cell apoptosis, and should be carefully employed in eye clinic.

Declaration of interest

The authors declare that there is no conflict of interest.

This work was supported by National High Technology Research and Development Program (“863” Program) of China (No. 2006AA02A132).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.