137
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Turmeric effect on subcutaneous insulin-induced amyloid mass: an in vivo study

, , , , , , , & show all
Pages 1-6 | Received 18 Apr 2015, Accepted 05 Mar 2016, Published online: 14 Apr 2016
 

Abstract

Protein-derived amyloid structures are associated with a wide variety of pathologies, including neurodegenerative diseases and local amyloidoses. Reports exist on the ability of insulin to form local amyloidoses under specific conditions. In vitro-generated fibrils of insulin have been previously shown to produce amyloid-containing masses upon repetitive subcutaneous injection in mouse. The present study aimed at investigating the effect of insulin fibrils injection in rats, as well as the potential of turmeric in attenuating this process. It was found that subcutaneous amyloid-containing masses could form in rats at a faster rate compared with mice. Upon addition of turmeric to the fibrils, previous to injection, formed masses had a significantly reduced size, as well as less ordered cellular structure. In conclusion, the results of this study show the potential of turmeric in attenuation of local amyloidosis. Furthermore, we suggest that this model could be of use in screening antiamyloid compounds.

Declaration of interest

The authors declare no conflict of interests.

This study has been supported by the Endocrinology and Metabolism Research Institute (EMRI) of Tehran University of Medical Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.