173
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Potential of sivelestat in protection against severe acute pancreatitis-associated lung injury in rats

, , &
Pages 445-452 | Received 04 Apr 2012, Accepted 14 Aug 2012, Published online: 24 Sep 2012
 

ABSTRACT

The incidence of acute pancreatitis has been rising worldwide in the past few decades. Despite extensive research efforts, the population-based mortality from acute pancreatitis remains high. Since dysfunction of multiple vital organs, most importantly the lungs, is the major cause of early death in acute pancreatitis patients, developing effective strategies to manage lung injury has become one of the focuses of recent research efforts aiming at improving the outcome of patients with acute pancreatitis. In this study, we attempted to create a rat model of acute pancreatitis through intraductal infusion of taurocholate and to evaluate the potential of sivelestat, a synthetic neutrophil elastase inhibitor, in protection against acute pancreatitis-associated lung injury using this rat model. The results demonstrated that: (1) 5% sodium taurocholate successfully induced histopathologic and biochemical abnormalities in the circulation, lung and pancreas characteristic of human acute pancreatitis, including an increase in amylase concentration and a decrease in partial arterial oxygen pressure (PaO2) in the blood, increases in activities of myeloperoxidase (MPO) (a lung injury marker) and neutrophil elastase (a quantitative indicator of neutrophil infiltration), and levels of malondialdehyde (an indicator of lipid peroxidation) and tumor necrosis factor-alpha (a major inflammatory mediator) in the lung; (2) intravenous administration of sivelestat effectively attenuated the taurocholate-induced abnormalities in all parameters analyzed except for serum amylase concentration. Our findings have validated the taurocholate model of acute pancreatitis and demonstrated great therapeutic potential for sivelestat in managing acute pancreatitis-associated lung injury.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.