174
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Enhancement of Intracellular Delivery of Anti-cancer Drugs by the Tat Peptide

, MSc, , PhD, , PhD, , PhD & , PhD
Pages 119-123 | Received 10 Jan 2011, Accepted 19 Jan 2011, Published online: 15 Mar 2011
 

Abstract

The arginine-rich cationic Tat peptides have been reported to enhance the intracellular delivery of macromolecules, including DNA, RNA, and proteins. In this work an arginine cationic peptide derived from the HIV-1 Tat protein was conjugated with noncovalent bonds to sulfonated aluminum phthalocyanine (AlPcS, a photosensitizer for the light-activated photodynamic cancer therapy), doxorubicin (DOX, a chemotherapeutic agent), or quantum dots (QDs, often used as carriers for the delivery of anticancer drugs). The fluorescence of intracellular conjugates of AlPcS-Tat, DOX-Tat, and QDs-Tat was studied by means of confocal laser scanning microscopy in the human nasopharyngeal carcinoma KB cells and cervical carcinoma Hela cells in vitro. The Tat peptide with noncovalent links can enhance at least a twofold of intracellular delivery of AlPcS, DOX, and QDs via an endocytotic pathway in the two tumor cell lines. This finding may suggest that the Tat peptide-mediated intracellular delivery of anticancer drugs may have the potential for improving efficacy of cancer therapy.

ACKNOWLEDGMENT

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,022.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.