109
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Imaging Circulating Monocytic Cells Fusing to Endothelial Cells in Acutely Injured and Regenerating Capillaries

, PhD, MPhil &
Pages 93-103 | Received 08 Aug 2013, Accepted 13 Sep 2013, Published online: 07 Mar 2014
 

Abstract

The present studies focus on monocytic circulating cells (CCs) interacting with the endothelial cells of pulmonary capillaries in acute lung injury. The CCs are further defined into sub-sets based on their structural profiles, i.e. CC1–3. They are shown to move into close apposition to adjacent capillary endothelium and to fuse to endothelial plasmalemmal membranes. Similarly, CCs are seen to fuse to the endothelial cells of regenerating capillaries after injury. Immunogold labeling studies demonstrate that CCs express a mediator promoting endothelial cell migration, proliferation and stability, i.e. VEGF, further supporting the potential of a paracrine interaction between the fusing cells, while the expression of CXCR4 by CCs, and of SDF-1α by adjacent endothelial cells, demonstrates a mechanism for retention of these cells at the capillary surface. Myeloid VEGF-R2+CD11b+ precursors and PDGF-Rβ+ expressing cells are identified within the CC population. The findings establish that, by fusing to endothelial cells, the monocytic CC population studied has the potential to promote capillary surface stability/integrity through a paracrine mechanism.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,022.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.