192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Formulation of sustained-release microspheres of granulocyte macrophage colony stimulating factor by freezing-induced phase separation with dextran and encapsulation with blended polymers

, , &
Pages 743-751 | Received 02 Mar 2011, Accepted 11 Jul 2011, Published online: 03 Oct 2011
 

Abstract

This study aimed to assess the potential merits of formulating sustained-release microspheres of recombinant human granulocyte macrophage colony stimulating factor (rhGM-CSF) via freezing-induced phase separation (FIPS) of the protein with dextran followed by encapsulation with binary mixture of poly(lactic-co-glycolic acid) (PLGA) 2A (MW∼12K) and 3A (MW∼47K) or of PLGA2A and polylactic acid (PLA; MW∼83K). The formulated dextran particles and microspheres were characterized in vitro for loading, aggregation, bioactivity and release behavior of the protein where appropriate. rhGM-CSF retained about 60% of bioactivity with no significant aggregation after each formulation step. Encapsulation of protein-loaded dextran particles attained only 80% with the PLGA2A and PLGA3A blend, but 100% with the PLGA2A and PLA mixture. The former formulation exhibited a triphasic in-vitro release profile typical of PLGA microspheres while the latter revealed a much lower initial burst followed by a steady and complete release of rhGM-CSF with preserved bioactivity over a 15-day period.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.