190
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Effect of PLGA hydrophilia on the drug release and the hypoglucemic activity of different insulin-loaded PLGA microspheres

, , , , &
Pages 791-798 | Received 02 May 2011, Accepted 02 Sep 2011, Published online: 03 Oct 2011
 

Abstract

The effects of viscosity and hydrophilic characteristics of different PLGA polymers on the microencapsulation of insulin have been studied in vitro and in vivo after subcutaneous administration to hyperglycemic rats. Hydrophilic PLGA polymers produced a higher burst effect than the hydrophobic ones. Moreover, an incomplete insulin release was observed with the hydrophilic PLGA polymers in comparison with the hydrophobic ones. An explanation for that incomplete release can be the development of polymer-insulin interactions associated to the polymer hydrophilic/hydrophobic character, as detected by DSC analysis. Differences in the release rate of microsphere formulations lead to differences in the hypoglycemic action and the weight of animals. Hydrophobic PLGA was able to prolong the hypoglycemic action up to 4 weeks which is at least double than that obtained with hydrophilic PLGA of a similar viscosity. Comparing insulin microspheres with an immediate release formulation, microspheres can increase insulin relative bioavailability up to four times.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.