320
Views
34
CrossRef citations to date
0
Altmetric
Research Articles

Exploring a new jellyfish collagen in the production of microparticles for protein delivery

, &
Pages 520-531 | Received 21 Sep 2011, Accepted 23 Jan 2012, Published online: 25 Jun 2012
 

Abstract

A microparticulate protein delivery system was developed using collagen, from the medusa Catostylus tagi, as a polymeric matrix. Collagen microparticles (CMPs) were produced by an emulsification-gelation-solvent extraction method and a high loading efficiency was found for the entrapment of lysozyme and α-lactalbumin. CMPs were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The uncross-linked CMPs were spherical, rough-surfaced, presenting an estimated median size of 28 µm by laser diffraction. Upon cross-linking, particle size (9.5 µm) and size distribution were reduced. CMPs showed a moderate hydrophobic behaviour and a positive surface charge. Cross-linking also resulted in greater stability in water, allowing a slow release, as shown by in vitro experiments. The assessment of lysozyme's biological activity showed that the protein remained active throughout the encapsulation and cross-linking processes. In summary, the work herein described shows the potential use of a marine collagen in the production of microparticles for the controlled release of therapeutic proteins.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.