171
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Release behaviour of carbamazepine-loaded poly(ε-caprolactone)/poly(ethylene oxide) microspheres

, , , &
Pages 151-160 | Received 17 Mar 2012, Accepted 07 Jun 2012, Published online: 01 Aug 2012
 

Abstract

Poly(ε-caprolactone) (PCL), a biodegradable and biocompatible aliphatic polyester has a great potential as a drug carrying material in controlled drug delivery/release systems. The most simple and economical way to tailor the release profile of active substances from biodegradable polymer matrix is by the addition of the second polymeric component in the polymer matrix, i.e. by blending. This study describes the preparation and characterization of a carbamazepine-loaded microspheres by the use of PCL blended with poly(ethylene oxide) as a drug carrying material. By the use of two-component hydrophilic/hydrophobic polymer blend as a microspheres’ matrix material, release profile of the drug can be modified and dictated. The microspheres prepared by classical oil-in-water emulsion solvent evaporation technique were characterized with respect to particle size and morphology, polymer matrix composition, encapsulation efficiency, physical state of the drug and in vitro release behaviour. It was presented that the release profile can be modified by the presence and the amount of hydrophilic component in the starting formulation of microspheres.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.