159
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Relationship between the solution thermodynamic properties of naproxen in organic solvents and its release profiles from PLGA microspheres

, &
Pages 218-224 | Received 01 Feb 2012, Accepted 24 Jul 2012, Published online: 01 Feb 2013
 

Abstract

Naproxen (NPX)-loaded poly-(D,L-lactic-co-glycolic acid) (PLGA) microparticles were prepared by the emulsion–solvent evaporation method. The different organic solvents used significantly affects the properties of the microparticles obtained. These microparticles exhibited a controlled release profile that extends up to 15 days depending on the organic solvent used. The formulations did not exhibit zero- or first-order release kinetics and no agreement with Higuchi or Korsmeyer–Peppas models was obtained. In all cases, the dissolution profiles were fitted to the model proposed by Gallagher and Corrigan for PLGA systems. It was found that this model fully describes the dissolution processes. An interesting relationship between the NPX solubility in the organic solvents studied and some parameters obtained for the dissolution model of the microparticles prepared with the same solvents is thus obtained. Accordingly, it can be proposed that the drug solubility in organic solvents is relevant to estimate the physical characteristics of microparticles other than its dissolution profiles.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.