167
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Utilization of catalytic hydrolysis of ethyl acetate for solvent removal during microencapsulation

, &
Pages 346-355 | Received 07 Jun 2012, Accepted 17 Sep 2012, Published online: 18 Oct 2012
 

Abstract

The objective of this study was to apply the specific acid-catalysed hydrolysis of ethyl acetate to completing solvent extraction during an emulsion-based microencapsulation process. The dispersed phase consisting of poly-D,L-lactide-co-glycolide and ethyl acetate was emulsified in an acid catalyst containing aqueous phase. Catalytic hydrolysis of ethyl acetate led to its continual leaching from the dispersed phase of the emulsion, thereby triggering microsphere hardening with high efficiency. Ketoprofen was successfully encapsulated into microspheres via this technique, and liquid chromatography–mass spectrometry showed that its structural integrity was preserved during microencapsulation. Compared to typical solvent extraction approaches, the acid-catalysis technique helped minimize the consumption of a quench liquid. Also, the resultant microspheres displayed excellent dispersibility and decreased propensity for aggregation. Furthermore, the new method provided better drug encapsulation efficiency and lower levels of residual ethyl acetate in microspheres. In conclusion, the acid-catalysis approach had great potential for the preparation of versatile microspheres and nanoparticles.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.