248
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the degradation of clonidine-loaded PLGA microspheres

, , , &
Pages 681-691 | Received 17 Jul 2012, Accepted 18 Feb 2013, Published online: 02 Apr 2013
 

Abstract

Context: The release of an encapsulated drug is dependent on diffusion and/or degradation/erosion processes.

Objective: This work aimed to better understand the degradation mechanism of clonidine-loaded microparticles.

Methods: Gel permeation chromatography was used to evaluate the degradation of the polymer. The water-uptake and the weight loss were determined gravimetrically. The swelling behaviour and the morphological changes of the formulations were observed by microscopy. The glass transition temperature and the crystallinity were also determined by differential scanning calorimetry and X-ray diffraction, respectively. The pH of the medium and inside the microspheres was assessed.

Results: The microspheres captured a large amount of water, allowing a decrease in the molecular weight of the polymer. The pH of the medium decreased after release of the degradation products and the pH inside the microparticles remained constant due to the neutralization of these acidic products.

Conclusion: Clonidine and buffers both had an action on the degradation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.