297
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment

, , , , , , , & show all
Pages 151-156 | Received 04 Apr 2014, Accepted 04 Aug 2014, Published online: 29 Sep 2014
 

Abstract

In previous studies carried out in our laboratory, a bile acid formulation exerted a hypoglycaemic effect in a rat model of type 1 diabetes (T1D). When the antidiabetic drug gliclazide was added to the bile acid, it augmented the hypoglycaemic effect. In a recent study, we designed a new formulation of gliclazide–deoxycholic acid (G-DCA), with good structural properties, excipient compatibility and which exhibited pseudoplastic–thixotropic characteristics. The aim of this study is to test the slow release and pH controlled properties of this new formulation. The aim is also to examine the effect of DCA on G release kinetics at various pH values and different temperatures. Microencapsulation was carried out using our Buchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared including: G-SA (control) and G-DCA-SA (test) at a constant ratio (1:3:30), respectively. Microcapsules were examined for efficiency, size, release kinetics, stability and swelling studies at pH 1.5, 3, 7.4 and 7.8 and temperatures of 25 °C and 37 °C. The new formulation is further optimised by the addition of DCA. DCA reduced bead-swelling of the microcapsules at pH 7.8 and 3 at 25 °C and 37 °C, and even though bead size remains similar after DCA addition, the percentage of G release was enhanced at high pH values (pH 7.4 and 7.8, p < 0.01). The new formulation exhibits colon-targeted delivery and the addition of DCA prolonged G release suggesting its suitability for the sustained and targeted delivery of G and DCA to the lower intestine.

View correction statement:
Erratum

Acknowledgements

The authors acknowledge the CHIRI, Biosciences Research Precinct at Curtin University.

Declaration of interest

The authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.