6
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Time-temperature relationships for step-down heating in normal and thermotolerant cells

, , &
Pages 643-652 | Received 13 Jan 1993, Accepted 20 Dec 1993, Published online: 09 Jul 2009
 

Abstract

Normal and thermotolerant H35 cells were submitted to step-down heating (SDH). SDH can significantly reduce the induction and expression of thermotolerance. For SDH a sensitizing treatment (ST) at 44 · 6°C was followed by a test treatment (TT) at a lower hyperthermic temperature. The comparison between the thermotolerant and non-thermotolerant condition was based on isosurvival ST doses. For both conditions dose-effect relationships were obtained by plotting the ST-surviving fraction against the D0 of a TT. The TT was at either 41 or 42–5°C, representing respectively, a permissive or a non-permisive condition for chronic induction of thermotolerance (CIT). The complex dose-effect relationships are partly exponential. In non-thermotolerant cells tested at 42–5°C the dose-effect relationship between ST and TT is relatively weak. At 41°C, however, the expression of CIT is strongly inhibited after a ST that kills < 20% of the cells. At higher ST doses the response is comparable with that at 42–5°C. In thermotolerant cells a high degree of thermosensitization is also observed for relatively low ST doses, but in contrast with non-thermotolerant cells a stronger dose-effect relationship remains at the higher ST doses. Ultimately this results in a comparatively higher degree of thermosensitization that can be achieved in non-thermotolerant cells. For example, at an isosurviving fraction of 0–15 the reduction of D0 in non-thermotolerant cells at 42 · 5°C is less than five times, whereas in thermotolerant cells, the D0 reduction is between 40 and 50 times. A similar reduction is found in non-thermotolerant cells tested at 41 °C. Subsequently, an isosurvival ST dose of about 40% was used in combination with a TT that was varied between 39 and 44°C. D0's were plotted in an Arrhenius diagram to obtain a time-temperature relationship for the effect of SDH on thermotolerant and non-thermotolerant cells. The four plots are all biphasic with a downward inflection. Thermotolerance causes an upward shift of the inflection point of 2°C relative to single-heated cells, whereas SDH causes a downward shift of 1 °C in single-heated cells and of 2°C in thermotolerant cells. For most of the temperature range, i.e. 39–43 · 5°C, SDH decreases the activation energies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.