358
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Prediction of Glaucomatous Visual Field Progression: Pointwise analysis

, , &
Pages 705-710 | Received 04 Jun 2013, Accepted 14 Nov 2013, Published online: 03 Jun 2014
 

Abstract

Purpose: To evaluate whether pointwise regression analysis of serial measures of retinal sensitivity can predict future visual field (VF) loss.

Methods: Medical records of 158 patients with glaucomatous eyes with at least 6 years follow-up and 10 reliable VF exams were retrospectively analyzed. The entire follow-up period was divided into two, roughly corresponding to the first (early period) and second (late period) half of follow-up. Retinal sensitivity data obtained from the Swedish interactive threshold algorithm standard or full-threshold VF tests were analyzed, and linear and first-order exponential regression analyses of retinal sensitivity against time were performed to obtain the slope of regression analysis in each VF test location. Paired t tests were used to compare the slopes of the early and late period in each regression analysis.

Results: When assessed by linear regression analysis, inferior nasal location showed highest rate of change (–0.52 dB/year) in early period. Late period showed generally faster rate of progression compared to early period. Superior arcuate and superior and inferior nasal locations showed that early and late slopes did not show significant difference (p value, 0.19 ∼ 0.49). Central and edged locations showed significant difference between the two slopes (p value  < 0.05). First-order exponential regression analysis showed similar result.

Discussion: Superior arcuate and superior and inferior nasal areas in VF had a consistent rate of change of retinal sensitivity, indicating that these locations may have the higher capability for prediction of future deterioration. These results suggest that location should be considered when predicting glaucomatous VF progression.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.