2,340
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Automatic exposure control in computed tomography – an evaluation of systems from different manufacturers

&
Pages 625-634 | Accepted 11 Feb 2010, Published online: 30 Apr 2010
 

Abstract

Background: Today, practically all computed tomography (CT) systems are delivered with automatic exposure control (AEC) systems operating with tube current modulation in three dimensions. Each of these systems has different specifications and operates somewhat differently.

Purpose: To evaluate AEC systems from four different CT scanner manufacturers: General Electric (GE), Philips, Siemens, and Toshiba, considering their potential for reducing radiation exposure to the patient while maintaining adequate image quality.

Material and Methods: The dynamics (adaptation along the longitudinal axis) of tube current modulation of each AEC system were investigated by scanning an anthropomorphic chest phantom using both 16- and 64-slice CT scanners from each manufacturer with the AEC systems activated and inactivated. The radiation dose was estimated using the parameters in the DICOM image information and image quality was evaluated based on image noise (standard deviation of CT numbers) calculated in 0.5 cm2 circular regions of interest situated throughout the spine region of the chest phantom.

Results: We found that tube current modulation dynamics were similar among the different AEC systems, especially between GE and Toshiba systems and between Philips and Siemens systems. Furthermore, the magnitude of the reduction in the exposure dose was considerable, in the range of 35–60%. However, in general the image noise increased when the AEC systems were used, especially in regions where the tube current was greatly decreased, such as the lung region. However, the variation in image noise among images obtained along the scanning direction was lower when using the AEC systems compared with fixed mAs.

Conclusion: The AEC systems available in modern CT scanners can contribute to a significant reduction in radiation exposure to the patient and the image noise becomes more uniform within any given scan.

Acknowledgments

This project was supported by the Swedish Radiation Safety Authority (SSI P 1579.07).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.