2,081
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Dosimetry and Quality Specification of High Energy Photon Beams

&
Pages 213-223 | Accepted 03 Feb 1986, Published online: 08 Jul 2009
 

Abstract

A number of quality descriptors are defined characterizing the photon attenuation and lepton contamination properties of high energy photon beams for radiation therapy. The dependence of the quality parameters on the design of the clinical beams such as the incident electron energy, target and filter thicknesses, field size and depth in the phantom are analyzed in some detail using analytical and Monte Carlo techniques. It is shown that the mean attenuation coefficient of the beam for a standard field size of 10 cm × 10 cm is related very accurately to the mean stopping power ratio for ionizing chamber dosimetry but also approximately to the equilibrium absorbed dose in the beam for a given photon energy fluence. This means that accurate photon dosimetry can be performed without knowing the acceleration potential, target design or filter thickness for the beam in use. Furthermore, the mechanism behind beam hardening and softening in the phantom are quantitized and suitable quality parameters for the lepton contamination are identified. The latter allow a determination of the lepton contamination for correction of the stopping power ratio near the surface if the contamination is large.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.