60
Views
37
CrossRef citations to date
0
Altmetric
Original Article

The Nitrite/Collagen Reaction: Non-Enzymatic Nitration as a Model System for Age-Related Damage

, , &
Pages 111-122 | Received 03 May 2000, Accepted 26 Dec 2000, Published online: 06 Aug 2009
 

Abstract

The effects of age seen in long-lived connective tissue proteins are thought to be the result of post-translational modifications by reactive molecules. One such molecule is the nitrite ion. Human nitrite exposure results predominately from endogenous production of nitric oxide as well as inhalation of cigarette smoke and ingestion of cured meats. Although nitrite reactions with various proteins have been studied previously with regard to carcinogenesis, the specific reaction with collagen and its role in age-related damage has never been examined. We describe the reaction of nitrite with type I collagen at neutral pH and body temperature. The incubation of collagen with nitrite results in an increase in cross-linking, the accumulation of a yellow chromophore, and a depletion of tyrosine residues. Similar changes also are found in aged human collagen. In addition, 3-nitro-tyrosine, which has recently been used as a marker for peroxynitrite mediated damage, is produced from this reaction. Thus, we propose non-enzymatic nitration as an in vitro model system for human collagen age-related damage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.