404
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Intermittent Traction Stretch Promotes the Osteoblastic Differentiation of Bone Mesenchymal Stem Cells by the ERK1/2-Activated Cbfa1 Pathway

, , , &
Pages 451-459 | Received 17 Dec 2011, Accepted 11 Jun 2012, Published online: 24 Jul 2012
 

Abstract

Mechanical stress plays a crucial role in bone formation and absorption. We investigated the osteoblastic differentiation of bone mesenchymal stem cells (BMSCs) affected by intermittent traction stretch at different time points and explored the mechanism of osteoblastic differentiation under this special mechanical stimulation. The BMSCs and C3H10T1/2 cells were subjected to 10% elongation for 1–7 days using a Flexcell Strain Unit, and then the mRNA levels of osteoblastic genes and the expression of core-binding factor a1 (Cbfa1) were examined. Furthermore, we focused specifically on the role of the extracellular signal-regulated kinases 1/2 (ERK1/2) and Cbfa1 in the osteogenesis of BMSCs stimulated by the stretch. The results of these experiments showed that the stretch induces a time-dependent increase in the expression of osteoblastic genes. The synthesis of osteoblastic genes was downregulated after the knockdown of Cbfa1 expression by short-interfering RNA. Furthermore, the stress-induced increase in the expression of Cbfa1 mRNA and osteoblastic genes was inhibited by U0126, an ERK1/2 inhibitor. These results indicate that long periods of intermittent traction stretch promote osteoblastic differentiation of BMSCs through the ERK1/2-activated Cbfa1 signaling pathway.

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 30901698, 10972142), the Shanghai Leading Academic Discipline Project (Project No. S30206), and the Shanghai Science and Technology Development Fund (Grant No. 08411961600).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.