136
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Inhibitory Effect of Adenovirus-Mediated siRNA-Targeting BMPR-IB on UHMWPE-Induced Bone Destruction in the Murine Air Pouch Model

, , , , , , & show all
Pages 528-534 | Received 28 Mar 2012, Accepted 09 Jun 2012, Published online: 24 Jul 2012
 

Abstract

Objective: Adenovirus expressing small interfering RNA (siRNA)-targeting BMPR-IB was locally administered into the air pouch of mice to improve bone resorption induced by ultra-high molecular weight polyethylene (UHMWPE) particles.

Method: Air pouches were established on the back of BALB/c mice, followed by the surgical introduction of a section of calvaria from a syngeneic mouse donor. The bone-implanted pouches were stimulated with the UHMWPE suspension. UHMWPE-containing mice were divided into three study groups to receive injections of adenovirus expressing BMPR-IB siRNA (BMPR-IB group), adenovirus expressing missense siRNA, and virus-free culture medium (control group) into the pouches, respectively. The tissues were harvested at 14 days after the treatment for molecular and histological analyses.

Results: Adenovirus-mediated BMPR-IB siRNA treatment significantly improved UHMWPE particle-induced bone resorption, reduced TRAP and RANK gene and protein expression levels, and diminished the number of TRAP-positive cells. Furthermore, the BMPR-IB siRNA inhibited osteoclast differentiation by targeting osteoblast for the induction of osteoprotegerin formation and downregulation of receptor for activation of nuclear factor-κB ligand production.

Conclusions: This study suggested that loss of bone morphogenetic protein signaling by BMPR-IB siRNA directs osteoblasts to decrease bone destruction in part by downregulating osteoclastogenesis through the receptor for activation of nuclear factor-κB ligand–osteoprotegerin pathway. Local administration of adenovirus expressing siRNA-targeting BMPR-IB may be a feasible and effective therapeutic candidate to treat or prevent wear debris-associated osteolysis.

Acknowledgment

This study was supported by National Nature Science Foundation of China (Z.-L. Deng, 30772211).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.