395
Views
14
CrossRef citations to date
0
Altmetric
Original Research Articles

ROCK inhibition enhances aggrecan deposition and suppresses matrix metalloproteinase-3 production in human articular chondrocytes

, , , &
Pages 89-95 | Received 01 May 2013, Accepted 03 Oct 2013, Published online: 10 Jan 2014
 

Abstract

Homeostasis of articular cartilage is maintained by a balance between catabolism and anabolism. Matrix metalloproteinase-3 (MMP-3) catabolism of cartilaginous extracellular matrix (ECM), including aggrecan (AGN), is an important factor in osteoarthritis progression. We previously reported that inhibition of Rho-associated coiled-coil forming kinase (ROCK), an effector of Rho family GTPases, activates the chondrogenic transcription factor SRY-type high-mobility-group box (SOX) 9 and prevents dedifferentiation of monolayer-cultured chondrocytes. We hypothesized that ROCK inhibition prevents chondrocyte dedifferentiation by altering the transcriptional balance between MMP-3 and AGN. Normal human articular chondrocytes were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y-27632). Expression of MMP-3 and AGN during monolayer cultivation was assessed by quantitative real-time PCR and western blot analysis. Chondrogenic redifferentiation potential of ROCKi-treated chondrocytes was evaluated by immunohistological analysis of pellet cultures. ROCKi treatment suppressed MMP-3 expression in monolayer- and pellet-cultured chondrocytes but increased AGN expression. Chromatin immunoprecipitation revealed that the association between transcription factors E26 transformation specific (ETS)-1 and SOX9 and their target genes MMP-3 and AGN, respectively, was affected by ROCKi treatment. ROCKi decreased the association between ETS-1 and its binding sites on the MMP-3 promoter, whereas ROCKi promoted the interaction between SOX9 and the AGN promoter. Our results suggest that ROCK inhibition may have an important role in modulating the balance between degradation and synthesis of cartilaginous ECM, a finding that may facilitate development of techniques to prepare differentiated chondrocytes for cartilage regeneration therapy.

Acknowledgements

We thank Dr Nobuhiro Abe for obtaining articular cartilage samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.