625
Views
39
CrossRef citations to date
0
Altmetric
Section 3: The Role of Host-Tumor Cell Interactions in Modulating The Tumor Microenvironment and Metastatic Niche

Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: functional roles of endothelial cells and pericytes in health and disease

, &
Pages 392-402 | Received 04 May 2015, Accepted 18 Jun 2015, Published online: 25 Aug 2015
 

Abstract

This review addresses fundamental mechanisms underlying how capillaries form in three-dimensional extracellular matrices and how endothelial cells (ECs) and pericytes co-assemble to form capillary networks. In addition to playing a critical role in supplying oxygen and nutrients to tissues, recent work suggests that blood vessels supply important signals to facilitate tissue development. Here, we hypothesize that another major function of capillaries is to supply signals to suppress major disease mechanisms including inflammation, infection, thrombosis, hemorrhage, edema, ischemic injury, fibrosis, autoimmune disease and tumor growth/progression. Capillary dysfunction plays a key pathogenic role in many human diseases, and thus, this suppressing function may be attenuated and central toward the initiation and progression of disease. We describe how capillaries form through creation of EC-lined tube networks and vascular guidance tunnels in 3D extracellular matrices. Pericytes recruit to the abluminal EC tube surface within these tunnel spaces, and work together to assemble the vascular basement membrane matrix. These processes occur under serum-free conditions in 3D collagen or fibrin matrices and in response to five key growth factors which are stem cell factor, interleukin-3, stromal-derived factor-1α, fibroblast growth factor-2 and insulin. In addition, we identified a key role for EC-derived platelet-derived growth factor-BB and heparin-binding epidermal growth factor in pericyte recruitment and proliferation to promote EC-pericyte tube co-assembly and vascular basement membrane matrix deposition. A molecular understanding of capillary morphogenesis and maturation should lead to novel therapeutic strategies to repair capillary dysfunction in major human disease contexts including cancer and diabetes.

Acknowledgments

The authors would like to thank Dr Amber Stratman for her outstanding work and contributions to our understanding of human capillary tube assembly.

Declaration of interest

The authors report no conflicts of interest.

This work was supported by NIH grants HL105606 and HL126518.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.