137
Views
10
CrossRef citations to date
0
Altmetric
Innovation

Investigation of transmembrane protein fused in lipid bilayer membranes supported on porous silicon

, , , , , & show all
Pages 28-34 | Received 05 Feb 2012, Accepted 17 Sep 2012, Published online: 31 Dec 2012
 

Abstract

This article investigates a device made from a porous silicon structure supporting a lipid bilayer membrane (LBM)fused with Epithelial Sodium Channel protein. The electrochemically-fabricated porous silicon template had pore diameters in the range 0.2~2 µm. Membranes were composed of two synthetic phospholipids: 1,2-diphytanoyl-sn-glycero-3-phosphoserine and 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine. The LBMwas formed by means of the Langmuir-Blodgett and Langmuir-Schaefer techniques, at a monolayer surface tension of 26 m Nm−1 in room temperature and on a deionized water subphase, which resulted in an average molecular area of 0.68–0.73 nm2. Fusion of transmembrane protein was investigated using Atomic Force Microscopy. Initial atomic force microscopy results demonstrate the ability to support lipid bilayers fused with transmembrane proteins across a porous silicon substrate. However, more control of the membrane’s surface tension using traditional membrane fusion techniques is required to optimize protein incorporation.

Declaration of interest: This work was funded by the Alabama EPSCoR Graduate Research Scholars Program and supported by the Office of the Vice President for Research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.