192
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Experimental research on anchoring force in intestine for the motion of capsule robot

, , , , &
Pages 334-341 | Received 04 Mar 2013, Accepted 04 Jun 2013, Published online: 24 Jun 2013
 

Abstract

Multiple research groups are currently attempting to develop less-invasive robotic capsule endoscopes (RCEs) with better outcomes for enteroscopic procedures. Understanding the biomechanical response of the bowel to RCE is crucial for optimizing the design of these devices. For this reason, this study aims to develop an analytical model to predict the anchoring force of the model when travelling through the intestine. Previous work has developed, characterized and tested the frictional characteristics of the intestine with microgroove structures that had different surface contours. This work tested basic anchoring force characteristics with custom-built testers and clamping mechanism dummies to analyse the robot clamping movement (which is vital to improving movement efficiency). Balloon-shaped and leg-based clamping mechanisms were developed, which were found to have variable anchoring forces from 0.01 N to 1.2 N. After analysing the experimental results it was found that: (a) robot weight does not play a major role in anchoring force; (b) an increase in anchoring force corresponded to an increase in diameter of the clamping mechanism; and (c) textured contact surfaces effectively increased friction. These results could be explained by the biomechanical response of the intestine, friction and mucoadhesion characteristics of the small intestine material. With these factors considered, a model was developed for determining anchoring force in the small intestine.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (NSFC) (no. 31170968); In advance of manned spaceflight research (010203); Shanghai science and technology commission funded project (09 DZ1907400). The authors would like to thank Mr Chenggeng Wu for his help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.