164
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of the stent–artery interaction

, &
Pages 463-469 | Received 26 Feb 2013, Accepted 31 Jul 2013, Published online: 18 Sep 2013
 

Abstract

It is well acknowledged that stent implantation causes abnormal stretch and strains on the arterial wall, which contribute to the formation and progression of restenosis. However, the experimental characterization of the strain field on the stented vessel is scant. In this work, the balloon-expandable stent implantation inside an artery analogue was captured through two high-speed CCD cameras. The surface strain maps on the stented tube were quantified with a 3-D digital image correlation technique. The strain history at one specific reference point illustrated three stenting phases, including balloon inflation, pressurization and deflation. The surface strain distributions along one axial path were obtained at various time points to demonstrate the stent–vessel interactions. The radial wall thickness reduction history was used to evaluate the pressure–diameter relationship for the balloon. Results indicated that the expansion process of the balloon was significantly altered by the external loadings from both the stent and artery analogue. In addition, the repeatability of the stenting experiments was demonstrated through two tests with a change of 5% in the stent-induced maximum first principal strain. Moreover, a computational model of the stenting procedure was developed to recapture the stenting experiments. Comparison between experiments and simulation showed a difference of 7.17% in the first principal strain averaged over the high strain area. This indicated the validation of the computational framework, which can be used to investigate the strain or stress field throughout the computational domain, a feature that is not affected by experimental techniques.

Acknowledgements

The support of the National Science Foundation under grant No. 0926880 is gratefully acknowledged. The authors thank Mr. Jonathan Hein for operating the ARAMIS system during experiments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.