361
Views
6
CrossRef citations to date
0
Altmetric
Innovation

A comparative study on the mechanical properties of the healthy and varicose human saphenous vein under uniaxial loading

, &
Pages 490-497 | Received 05 May 2015, Accepted 19 Aug 2015, Published online: 11 Sep 2015
 

Abstract

Saphenous Vein (SV) due to fatness, age, inactiveness, etc. can be afflicted with varicose. The main reason of the varicose vein is believed to be related to the leg muscle pump which is unable to return the blood to the heart in contradiction of the effect of gravity. As a result of the varicose vein, both the structure and mechanical properties of the vein wall would alter. However, so far there is a lack of knowledge on the mechanical properties of the varicose vein. In this study, a comparative study was carried out to measure the elastic and hyperelastic mechanical properties of the healthy and varicose SVs. Healthy and varicose SVs were removed at autopsy and surgery from seven individuals and then axial tensile load was applied to them up to the failure point. In order to investigate the mechanical behaviour of the vein, this study was benefitted from three different stress definitions, such as 2nd Piola-Kichhoff, engineering and true stresses and four different strain definitions, i.e. Almansi-Hamel, Green-St. Venant, engineering and true strains, to determine the linear mechanical properties of the SVs. A Digital Image Correlation (DIC) technique was used to measure the true strain of the vein walls during load bearing. The non-linear mechanical behaviour of the SVs was also computationally evaluated via the Mooney-Rivlin material model. The true/Cauchy stress–strain diagram exhibited the elastic modulus of the varicose SVs as 45.11% lower than that of the healthy ones. Furthermore, by variation of the stress a significant alteration on the maximum stress of the healthy SVs was observed, but then not for the varicose veins. Additionally, the highest stresses of 4.99 and 0.65 MPa were observed for the healthy and varicose SVs, respectively. These results indicate a weakness in the mechanical strength of the SV when it becomes varicose, owing to the degradation of the elastin and collagen content of the SV. The Mooney-Rivlin hyperelastic and the Finite Element (FE) data were finally well compared to the experimental data.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.