349
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Performance analysis of seismocardiography for heart sound signal recording in noisy scenarios

, &
Pages 106-118 | Received 30 Sep 2015, Accepted 03 Jan 2016, Published online: 09 Feb 2016
 

Abstract

This paper presents a system based on Seismocardiography (SCG) to monitor the heart sound signal for the long-term. It uses an accelerometer, which is of small size and low weight and, thus, convenient to wear. Such a system should also be robust to various noises which occur in real life scenarios. Therefore, a detailed analysis is provided of the proposed system and its performance is compared to the performance of the Phoncardiography (PCG) system. For this purpose, both signals of five subjects were simultaneously recorded in clinical and different real life noisy scenarios. For the quantitative analysis, the detection rate of fundamental heart sound components, S1 and S2, is obtained. Furthermore, a quality index based on the energy of fundamental components is also proposed and obtained for the same. Results show that both the techniques are able to acquire the S1 and S2, in clinical set-up. However, in real life scenarios, we observed many favourable features in the proposed system as compared to PCG, for its use for long-term monitoring.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.