76
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Lower limb kinematic and kinetic differences between transtibial amputee fallers and non-fallers

, , &
Pages 399-410 | Published online: 08 May 2010
 

Abstract

Stair walking relies on concentric contraction of the ankle plantarflexor and knee extensor muscles, which are either absent or weakened in transtibial amputees. As a result the risk of falling is increased in this population. The aim of this study was to compare the gait patterns of transtibial amputee fallers and non-fallers during stair ascent. Eleven participants (fallers = 6; non-fallers = 5) walked along a 3-m walkway and ascended a three-step staircase with handrails, at their self-selected pace, while three-dimensional kinematic data were collected from the lower limbs. A force plate was embedded into the first step and kinetic data were measured for the intact lead limb only. The fallers walked significantly faster (p = 0.00) and exhibited less hip flexion (p = 0.05) and less anterior pelvic tilt (p = 0.04) compared to the non-fallers. The fallers had significantly greater first and second peak vertical ground reaction force (GRF) on the intact limb than the non-fallers (p = 0.05 and p = 0.01, respectively) contributing to the significantly larger ankle (p = 0.02) and hip moments (p = 0.04). These findings suggested the amputee non-fallers performed mechanically demanding tasks more cautiously. Two of the participants self-selected a ‘step to’ gait pattern, ascending one step at a time. This may be considered a compensatory mechanism for the lack of ankle mobility and functional muscle performance in these two transtibial amputees.

Acknowledgements

The authors would like to thank Dr Nick Jayawardhana, Consultant Physician, and Vicki Russell, Prosthetics Services Manager, from the Hull & East Yorkshire NHS Trust Artificial Limb Unit for their assistance in recruiting participants for this study.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.