330
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Warfarin and UDP-glucuronosyltransferases: writing a new chapter of metabolism

, &
Pages 55-61 | Accepted 27 Jul 2009, Published online: 14 Jan 2010
 

Abstract

The widely prescribed anticoagulant, Coumadin (racemic R/S-warfarin), Bristol-Myers Squibb Company, Clinton, NY has a narrow therapeutic range and wide interindividual response due, in part, to drug metabolism. Early identification of hydroxywarfarins (OHWARs), especially S-7-OHWAR, as major metabolites fostered studies characterizing cytochrome P450s responsible for those reactions. Nevertheless, phase II metabolism by sulfotransferases and, ­especially uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), marks the next chapter in warfarin inactivation and clearance. Rodents converted OHWARs to glucuronides (O-GLUC), including high levels of 4’-, 7-, and 8-O-GLUC. Similarly, humans generated significant levels of glucuronides following treatment with warfarin. 7-O-GLUC was a major metabolite, while 6- and 8-O-GLUC were minor ones. Surprisingly, warfarin glucuronidation accounted for up to 13% of metabolites. This capacity in humans derives from several UGTs, as shown by studies with recombinant enzymes and racemic warfarin and OHWARs. 7-OHWAR was a high-affinity substrate for UGT1A1, compared to other UGTs. UGT1A1 and UGT1A10 also glucuronidated 6-OHWAR. Of five UGT1A enzymes, UGT1A10 was approximately 7-fold more efficient than the rest. Broad substrate specificity for UGT1A10 derives, in part, from an active site-binding motif, specifically F90-M91-V92-F93. Unlike glucuronidation, less is known about sulfonation of warfarin and its metabolites, except that low capacities are shown by rats and, possibly, humans. Collectively, phase I and II metabolic steps create pathways for inactivating and eliminating warfarin that require elucidation. These findings will ultimately enrich our understanding of warfarin metabolism and facilitate the interpreting of metabolic profiles of patients. This knowledge will possibly avoid complications during warfarin therapy related to metabolism by personalizing therapy for the patient.

Acknowledgements

This work was funded by the National Institutes of Health (grants DK60109 and GM075893), a Bioterrorism Cooperative Agreement (U90/CCU616974-07), an Arkansas Public Health Laboratory Fellowship, and a Center for Disease Control Contract (200-2007-21729).

Declaration of interest: The author report no financial conflict of interest. The authors alone are responsible for the content and writing of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.