306
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Regulation of the cardiac muscle ryanodine receptor by glutathione transferases

, , , &
Pages 236-252 | Received 06 Dec 2010, Accepted 15 Dec 2010, Published online: 17 Feb 2011
 

Abstract

Glutathione transferases (GSTs) are generally recognized for their role in phase II detoxification reactions. However, it is becoming increasingly apparent that members of the GST family also have a diverse range of other functions that are, in general, unrelated to detoxification. One such action is a specific inhibition of the cardiac isoform of the ryanodine receptor (RyR2) intracellular Ca2+ release channel. In this review, we compare functional and physical interactions between members of the GST family, including GSTO1-1, GSTA1-1, and GSTM2-2, with RyR2 and with the skeletal isoform of the ryanodine receptor (RyR1). The active part of the muscle-specific GSTM2-2 is localized to its nonenzymatic C-terminal α-helical bundle, centered around α-helix 6. The GSTM2-2 binding site is in divergent region 3 (DR3 region) of RyR2. The sequence differences between the DR3 regions of RyR1 and RyR2 explain the specificity of the GSTs for one isoform of the protein. GSTM2-2 is one of the few known endogenous inhibitors of the cardiac RyR and is likely to be important in maintaining low RyR2 activity during diastole. We discuss interactions between a nonenzymatic member of the GST structural family, the CLIC-2 (type 2 chloride intracellular channel) protein, which inhibits both RyR1 and RyR2. The possibility that the GST and CLIC2 proteins bind to different sites on the RyR, and that different structures within the GST and CLIC proteins bind to RyR channels, is discussed. We conclude that the C-terminal part of GSTM2-2 may provide the basis of a therapeutic compound for use in cardiac disorders.

Acknowledgments

The authors are grateful to Suzy Pace and Joan Stivala for assistance with the preparation of SR vesicles and to Esther Gallant for her assistance with channel recording.

Declaration of interest

The work was funded by grants (#268027 and #471462) from the Australian National Health and Medical Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.