782
Views
16
CrossRef citations to date
0
Altmetric
Original Article

The effect of nanoparticle properties, detection method, delivery route and animal model on poly(lactic-co-glycolic) acid nanoparticles biodistribution in mice and rats

&
Pages 128-141 | Received 29 Sep 2013, Accepted 04 Nov 2013, Published online: 05 Dec 2013
 

Abstract

A review of poly(lactic-co-glycolic) acid (PLGA) nanoparticle (NP) biodistribution was conducted with the intent of identifying particle behavior for drug delivery applications. Databases such as Science Direct and Web of Science were used to locate papers on biodistribution of intravenous (i.v.) and orally delivered PLGA NPs in mice and rats. The papers included in the review were limited to those that report biodistribution data in terms of % dose particles/g tissue in the liver, kidney, spleen, lung, heart and brain. Noted trends involved particle behavior based on individual organ, particle size, animal model, type of indicator (entrapped versus covalently linked) and method of delivery (oral or i.v.). The liver showed the highest uptake of particles in mice, and the lung showed the highest uptake in rats. Minimal amounts of particles were detected in both the heart and brain of rats and mice. In rats, the concentration of particles approached 0% dose/g or decreased significantly over 24 h after administration of a single dose of particles. Higher concentrations of smaller particles were evident in the liver, kidney and spleen. Orally delivered drugs showed little to no uptake within the 24 h analysis when compared with i.v. delivered NPs. Differences in particle concentrations between rats and mice were also observed as expected when expressed as % dose/g organ. Particles with covalently linked indicators showed lower concentrations in tissues than particles with physically entrapped indicators. Further research on oral delivery of PLGA NPs as well as distribution beyond 24 h is needed to fully understand particle behavior in vivo for successful application of NPs in drug delivery.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.