1,410
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer’s disease

, , &
Pages 207-223 | Received 11 Oct 2013, Accepted 08 Jan 2014, Published online: 05 Feb 2014
 

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer’s patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers – insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.

Acknowledgements

The authors acknowledge the funding from Natural Science and Engineering Council of Canada (NSERC) – operating grant to Z.L. and NSERC Canada Graduate Scholarship and WIN Graduate Fellowship to E.D.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.