126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

pH Sensitive graft copolymers for zero order drug release: A mechanistic analysis

&
Pages 73-83 | Received 11 Nov 2010, Accepted 19 May 2011, Published online: 28 Nov 2011
 

Abstract

Aliphatic polyesters containing pendent unsaturation were synthesized by the polycondensation of a diol, dicarboxylic acid and glycidyl methacrylate. Grafting methacrylic acid (MAA) resulted in graft copolymers containing polyester backbone and MAA grafts. Depending on composition, the polymers swelled extensively and eroded or dissolved at near neutral pH but remained in collapsed state at acidic pH. Three representative drugs differing in solubility, viz., Diltiazem hydrochloride (DH), Indomethacin (IM) and Verapamil hydrochloride (VH) were released at constant rate from tablets made by compressing spray-dried microparticles. The release of DH at constant rate has been attributed to increase in diffusion coefficient of the drug from the swollen layer of matrix. The release of IM and VH at constant rate was governed by erosion and was enhanced in matrices which undergo dissolution. The release rate was enhanced with increasing MAA content and the frequency of grafts along the polyester backbone. Once a day dosage forms for drugs differing in solubility have been developed using a single polymer matrix which is easy to manufacture.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.