290
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir

, , , , , , , , & show all
Pages 84-92 | Received 20 Sep 2010, Accepted 25 May 2011, Published online: 04 Jul 2011
 

Abstract

Encapsulation of Ganciclovir in lipophilic vesicular structure may be expected to enhance the oral absorption and prolong the existence of the drug in the systemic circulation. So the purpose of the present study was to improve the oral bioavailability of Ganciclovir by preparing nanosized niosomal dispersion. Niosomes were prepared from Span40, Span60, and Cholesterol in the molar ratio of 1:1, 2:1, 3:1, and 3:2 using reverse evaporation method. The developed niosomal dispersions were characterized for entrapment efficiency, size, shape, in vitro drug release, release kinetic study, and in vivo performance. Optimized formulation (NG8; Span60:Cholesterol 3:2 molar ratio) has shown a significantly high encapsulation of Ganciclovir (89 ± 2.13%) with vesicle size of 144 ± 3.47 nm (polydispersity index [PDI] = 0.08). The in vitro release study signifies sustained release profile of niosomal dispersions. Release profile of prepared formulations have shown that more than 85.2 ± 0.015% drug was released in 24 h with zero-order release kinetics. The results obtained also revealed that the types of surfactant and Cholesterol content ratio altered the entrapment efficiency, size, and drug release rate from niosomes. In vivo study on rats reveals five-time increment in bioavailability of Ganciclovir after oral administration of optimized formulation (NG8) as compared with tablet. The effective drug concentration (>0.69 µg/mL in plasma) was also maintained for at least 8 h on administration of the niosomal formulation. In conclusion, niosomes can be proposed as a potential oral delivery system for the effective delivery of Ganciclovir.

Acknowledgment

The authors would like to acknowledge Ranbaxy laboratories, Gurgaon, India for providing a gift sample of Ganciclovir.

The authors are grateful for financial support from the Department of Biotechnology Govt. of India. The authors state no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.