624
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Use of highly compressible Ceolus microcrystalline cellulose for improved dosage form properties containing a hydrophilic solid dispersion

, , , , &
Pages 180-189 | Received 06 Feb 2011, Accepted 04 Jun 2011, Published online: 21 Jul 2011
 

Abstract

The development of amorphous solid dispersions containing poorly soluble drug substances has been well-documented; however, little attention has been given to the development of the finished dosage form. The objective of this study was to investigate the use of Ceolus microcrystalline cellulose, a highly compressible excipient, for the production of rapidly disintegrating tablets containing a hydrophilic solid dispersion of a poorly soluble drug, indomethacin. Solid dispersions of indomethacin and Kollidon® VA64 were prepared by hot melt extrusion and characterized for amorphous nature. Milled dispersion particles at 500 mg/g drug loading were shown to be amorphous by differential scanning calorimetry and provided rapid dissolution in sink conditions. Physical characterization of the milled extrudate showed that the particle size of the intermediate was comparable with Ceolus PH-102 and larger than the high compressibility grades of microcrystalline cellulose selected for the trial (Ceolus KG-802, Ceolus UF-711). Preliminary tableting trials showed that dissolution performance was significantly reduced for formulations at dispersion loadings in excess of 50%. Using a mixture design of experiments (DOE), the levels of PH-102, KG-802, UF-711, and PH-301 were optimized. Trials revealed a synergistic relationship between conventional grades (PH-102 and PH-301) and highly compressible grades (KG-802 and UF-711) leading to improved compression characteristics and more rapid dissolution rates. The formulation and resulting compressibility were also shown to have an impact on in vitro supersaturation indicating tablet formulation could impact oral bioavailability. Through the use of highly compressible microcrystalline cellulose grades such as Ceolus KG-802 and UF-711, it may be possible to maximize the bioavailability benefit of amorphous solid dispersions administered as tablet dosage forms.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.