280
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts

&
Pages 659-669 | Received 07 Jan 2011, Accepted 15 Jun 2011, Published online: 27 Apr 2012
 

Abstract

The objective was to investigate the potential of polymer molecular weight (MW) and polymer blends for the control of drug release from in situ gelling nasal inserts prepared by lyophilization of solutions of model drugs (oxymetazoline HCl, diprophyllin) and polymers. Drug release, polymer solution viscosity, water uptake and mass loss, mechanical properties, and bioadhesion potential were measured. Sonication was effective to reduce the viscosity/polymer MW of carrageenan solutions. Nasal inserts prepared from sonicated carrageenan showed an insignificant reduction in water uptake with sonication time and no disintegration of the gel matrix. In contrast, inserts of different MW Na-alginates revealed a reduced water uptake and an increased mass loss with lower MW. Inserts prepared from carrageenan/low MW Na-alginate blends took up more water at a higher low MW Na-alginate content. Sonicated carrageenan inserts released oxymetazoline HCl independent of the sonication time and diprophyllin with only a slight reduction in the release rate. Release of both drugs from Na-alginate inserts was slow from high MW inserts because no insert dissolution occurred. Increasing the Na-alginate content of inserts prepared from polymer blends accelerated the drug release enabling release rates over a broad range. The bioadhesion potential of Na-alginate inserts was strongly reduced for the low MW grades because of dissolution of the inserts. Xanthan gum and Carbopol 971 blended with Na-alginate formed inserts with poor bioadhesion. The use of polymer blends to control the drug release from nasal inserts was superior to the use of polymers of different MW.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.