180
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and in vitro evaluation of bidirectional release and stability studies of mucoadhesive donut-shaped captopril tablets

, , , , , & show all
Pages 706-717 | Received 14 Apr 2011, Accepted 09 Sep 2011, Published online: 19 Oct 2011
 

Abstract

Objective: To obtain controlled release of captopril in the stomach, coated, mucoadhesive donut-shaped tablets were designed.

Materials and methods: Donut-shaped tablet were made of different ratios of diluents to polymer or combination of polymers by direct compression method. Top and bottom portions of the tablet were coated with water-insoluble polymer followed by mucoadhesive coating. Time of water penetration, measurement of tensile strength, mucoadhesion studies (static ex vivo and ex vivo wash-off) were taken into account for characterization of respective films. In vitro study has been performed at different dissolution mediums. Optimized batches were also prepared by wet granulation. Stability studies of optimized batches have been performed.

Results: The results of time of water penetration and tensile strength indicated positive response against water impermeation. Mucoadhesive studies showed that film thickness of 0.12 mm was good for retention of tablet at stomach. At pH 1.2, optimized batch of tablet made with hydroxypropyl methyl cellulose (HPMC) E15 as binder showed 80% w/w drug release within 4–5 h with maximum average release of 97.49% w/w. Similarly, maximum average releases of 96.36% w/w and 95.47% w/w were obtained with nearly same dissolution patterns using combination of HPMC E5 and HPMC E50 and sodium salt of carboxy methyl cellulose (NaCMC) 500–600 cPs instead of HPMC E15. The release profiles in the distilled water and pH 4.5 followed the above pattern except deviation at pH 6.8. Stability studies were not positive for all combinations.

Conclusion: Coated, mucoadhesive donut-shaped tablet is good for controlled release of drug in the stomach.

Acknowledgment

Prof. Amal Kumar Bandyopadhyay, Department of Pharmaceutical Technology, Jadavpur University, India is acknowledged because of his technical support and advice.

Declaration of interest

University Grants Commission (UGC), New Delhi, India and All India Council for Technical Education (AICTE), New Delhi, India were giving financial grant for carrying out this research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.