972
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Optimization of the lyophilization process for long-term stability of solid–lipid nanoparticles

, , &
Pages 1270-1279 | Received 09 Aug 2011, Accepted 28 Nov 2011, Published online: 12 Jan 2012
 

Abstract

Objectives: To optimize a lyophilization protocol for solid–lipid nanoparticles (SLNs) loaded with dexamethasone palmitate (Dex-P) and to compare the long-term stability of lyophilized SLNs and aqueous SLN suspensions at two storage conditions.

Materials and Methods: The effect of various parameters of the lyophilization process on SLN redispersibility was evaluated. A three month stability study was conducted to compare changes in the particle size and drug loading of lyophilized SLNs with SLNs stored as aqueous suspensions at either 4°C or 25°C/60% relative humidity (RH).

Results and Discussion: Of nine possible lyoprotectants tested, sucrose was shown to be the most efficient at achieving SLN redispersibility. Higher freezing temperatures, slower freezing rates, and longer secondary drying times were also shown to be beneficial. Loading of the SLNs with Dex-P led to slightly larger particle size and polydispersity index increases, but both parameters remained within an acceptable range. Drug loading and particle shape were maintained following lyophilization, and no large aggregates were detected. During the stability study, significant growth and drug loss were observed for aqueous SLN suspensions stored at 25°C/60% RH. In comparison, lyophilized SLNs stored at 4°C exhibited a consistent particle size and showed <20% drug loss. Other storage conditions led to intermediate results.

Conclusions: A lyophilization protocol was developed that allowed SLNs to be reconstituted with minimal changes in their physicochemical properties. During a three month period, lyophilized SLNs stored at 4°C exhibited the greatest stability, showing no change in the particle size and a minimal reduction in drug retention.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.