1,310
Views
48
CrossRef citations to date
0
Altmetric
Research Article

A simple method of microneedle array fabrication for transdermal drug delivery

, , &
Pages 299-309 | Received 12 Jan 2012, Accepted 14 Mar 2012, Published online: 23 Apr 2012
 

Abstract

The outermost layer of skin, stratum corneum, being lipophilic limits the passive transport of hydrophilic and large molecular weight drugs. Microfabrication technology has been adapted to fabricate micron scale needles, which are minimally invasive, yet able to deliver the drugs across this barrier layer. In this study, we fabricated microneedles from a biocompatible polymer, namely, poly (ethylene glycol) diacrylate. A simple lithographical approach was developed for microneedle array fabrication. Several factors including polymerization time, ultraviolet light intensity and distance from light source were studied for their effects on microneedle formation. The microneedle length and tip diameter can be controlled by varying these factors. The microneedles were shown to be able to penetrate cadaver pig skin. Model drug rhodamine B was encapsulated in the range of 50 µg to 450 µg per microneedle array. The fabricated microneedles containing rhodamine B increased the permeability by four times than the control. Altogether, we demonstrated that the microneedle arrays can be fabricated through a simple single-step process and needles were mechanically strong to penetrate skin, increasing the permeability of encapsulated drug through skin.

Acknowledgements

We thank Ms. Joleen Lim of SBIC-Nikon Imaging Centre, Singapore for the assistance provided in imaging the microneedle samples. J.S.K. is a recipient of NUS research scholarship.

Declaration of interest

This work was supported by a startup grant from National University of Singapore. The authors report no conflict of interest and are solely responsible for the content of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.