180
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Dissolution enhancement of cefdinir with hydroxypropyl-β-cyclodextrin

, , , , &
Pages 1638-1643 | Received 16 Jul 2012, Accepted 04 Sep 2012, Published online: 02 Oct 2013
 

Abstract

The solid state properties and dissolution behavior of binary systems of cefdinir (CEF) with hydroxypropyl-β-cyclodextrin (HP-β-CD) were investigated. CEF-HP-β-CD interaction in the solution state was studied by phase-solubility analysis and demonstrates the ability of HP-β-CD to complex with CEF giving AL type profile with 65.28 ± 1.3 M−1 stability constant. The freeze drying technique was adopted to prepare binary systems of CEF with HP-β-CD in 1:1 molar ratio. The solid inclusion was characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD), and scanning electron microscopy (SEM). Aqueous solubility of CEF-HP-β-CD inclusion complex was 2.36-fold of pure CEF. The dissolution profiles of inclusion complexes were determined and compared with those of CEF alone and their physical mixtures. The dissolution rate of inclusion complex was superior than the CEF alone. These approaches indicated that CEF was able to form an inclusion complex with HP-β-CD, and the inclusion compounds exhibited different spectroscopic features and properties.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.