668
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Solid self-microemulsifying drug delivery system of ritonavir

&
Pages 477-487 | Received 28 Sep 2012, Accepted 17 Jan 2013, Published online: 07 Mar 2013
 

Abstract

Context: Ritonavir (RTV) is a human immunodeficiency virus (HIV) protease inhibitor (PI) with activity against HIV, practically insoluble in water and recommended to co-administer as a booster along with other HIV-PI to enhance their bioavailability. The present study is aimed to enhance the dissolution and oral bioavailability of water-insoluble RTV using the Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS).

Objective: To enhance the dissolution and oral bioavailability of water-insoluble RTV using the S-SMEDDS.

Material and methods: Liquid SMEDDS (L-SMEDDS) of RTV was formulated by the optimizing ratio of Imwitor 988 (Oil), Cremophor EL and Cremophor RH 40 (1:1) (surfactant) and Capmul GMS K-50 (cosurfactant). Optimized L-SMEDDS showed improved dissolution rate of RTV compared to pure RTV powder. Optimized L-SMEDDS of RTV was adsorbed on Neusilin US-2 using a simple wet granulation technique with selected excipients to convert it into S-SMEDDS.

Results and discussion: Optimized L-SMEDDS showed an improved dissolution rate of RTV compared to pure RTV powder. Droplet size of resultant microemulsion of L-SMEDDS of RTV was observed between 16 and 22 nm and independent of pH (i.e. 0.1 N HCl and water). Conversion of the crystalline form of RTV to amorphous form was observed when RTV formulated into SMEDDS form as per X-ray diffraction study. In vitro dissolution study, stability study of optimized S-SMEDDS confirmed the formulation of stable and improved dissolution of RTV. Relative bioavailability of RTV was determined in male Wistar rats and pharmacokinetic parameters were calculated by the comparison of optimized S-SMEDDS versus aqueous suspension of RTV. S-SMEDDS improved the plasma profile in terms of maximum plasma concentration (Cmax), and area under curve (AUC0–24h), which is almost twofolds higher than the aqueous suspension of RTV.

Conclusion: S-SMEDDS tablet of RTV was formulated successfully by adsorbing optimized L-SMEDDS of RTV on Neusilin-US2® as a potential carrier with enhanced solubility and relative oral bioavailability compared to pure RTV by twofolds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.