218
Views
8
CrossRef citations to date
0
Altmetric
Research Article

To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools

&
Pages 744-752 | Received 02 Dec 2013, Accepted 26 Feb 2014, Published online: 24 Mar 2014
 

Abstract

Microcrystalline cellulose (MCC-102) is one of the most commonly used excipient in the pharmaceutical industry. For this research purpose, authors have developed a different technique to determine the end point for MCC-102 using water and isopropyl alcohol 70% (IPA) as granulating agent. Wet and dry granules obtained were characterized for their flow properties using the powder rheometer and thermal analysis. Powder rheometer was used to measure basic flowability energy (BFE), specific energy (SE), percentage compressibility, permeability and aeration. Thermal analysis includes effusivity and differential scanning calorimetry (DSC) measurements. BFE and SE results showed water granules requires high energy as compared to IPA granules. Permeability and compressibility results suggest IPA forms more porous granules and have better compressibility as compared to water granules. Hardness data reveals interesting phenomena in which as the amount of water increases, hardness decreases and vice-versa for IPA. Optimal granules were obtained in the range of 45–55% w/w. DSC data supported the formation of optimal granules. Empirical measurements like angle of repose did not reveal any significant differences between powder flow among various granules. In this paper, with the help of thermal effusivity and powder rheology we were able to differentiate between various powder flows and determine the optimal range for granule formation.

Declaration of interest

The authors report no declaration of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.