443
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Formulation studies on ibuprofen sodium–cationic dextran conjugate: effect on tableting and dissolution characteristics of ibuprofen

&
Pages 39-59 | Received 16 Sep 2014, Accepted 23 Feb 2015, Published online: 31 Mar 2015
 

Abstract

The effect of electrostatic interaction between ibuprofen sodium (IbS) and cationic diethylaminoethyl dextran (Ddex), on the tableting properties and ibuprofen release from the conjugate tablet was investigated. Ibuprofen exhibits poor flow, compaction (tableting) and dissolution behavior due to its hydrophobic structure, high cohesive, adhesive and viscoelastic properties therefore it was granulated with cationic Ddex to improve its compression and dissolution characteristics. Electrostatic interaction and hydrogen bonding between IbS and Ddex was confirmed with FT-IR and DSC results showed a stepwise endothermic solid–solid structural transformation from racemic to anhydrous forms between 120 and 175 °C which melted into liquid form at 208.15 °C. The broad and diffused DSC peaks of the conjugate granules as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. It was evident that Ddex improved the flowability and densification of the granules and increased the mechanical and tensile strengths of the resulting tablets as the tensile strength increased from 0.67 ± 0.0172 to 1.90 ± 0.0038 MPa with increasing Ddex concentration. Both tapping and compression processes showed that the most prominent mechanism of densification were particle slippage, rearrangement and plastic deformation while fragmentation was minimized. Ddex retarded the extent of dissolution in general, indicating potentials for controlled release formulations. Multiple release mechanisms including diffusion; anomalous transport and super case II transport were noted. It was concluded that interaction between ibuprofen sodium and Ddex produced a novel formulation with improved flowability, tableting and dissolution characteristics with potential controlled drug release characteristics dictated by Ddex concentration.

Acknowledgements

The authors are thankful to Dr. Richard Webster, Mrs. Angela Ferguson and Mr. David Ian Fletcher for their technical support in the Pharmaceutics Laboratories at the Leicester School of Pharmacy, De Montfort University, UK.

Declaration of interest

The authors declare that there is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.