345
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution

&
Pages 2029-2036 | Received 12 Sep 2014, Accepted 20 Apr 2015, Published online: 26 May 2015
 

Abstract

Context: Gabapentin was selected to formulate oral controlled release dry suspension because of short biological half life of 5–7 h and low bioavailability (60%). Gabapentin is a bitter drug so an attempt was made to mask its taste.

Objective: To formulate and evaluate controlled release dry suspension for reconstitution to increase the bioavailability and to control bitter taste of drug.

Materials and methods: Cyclodextrin based nanosponges were synthesized by previously reported melt method. The nanosponge–drug complexes were characterized by FTIR, DSC and PXRD as well as evaluated for taste and saturation solubility. The complexes were coated on Espheres by a suspension layering technique followed by coating with ethyl cellulose and Eudragit RS-100. A dry powder suspension for reconstitution of the microspheres was formulated and evaluated for taste, redispersibility, in vitro dissolution, sedimentation volume, leaching and pharmacokinetics.

Results and discussion: The complexes showed partial entrapment of drug nanocavities. Significant decrease in solubility (25%) was observed in the complexes than pure drug in different media. The microspheres of nanosponge complexes showed desired controlled release profile for 12 h. Insignificant drug leaching was observed in reconstituted suspension during storage for 7 days at 45 °C/75% RH. Nanosponges effectively masked the taste of Gabapentin and the coating polymers provided controlled release of the drug and enhanced taste masking. The results of in vivo studies showed increase in bioavailability of controlled release suspension by 24.09% as compared to pure drug.

Conclusion: The dry powder suspension loaded with microspheres of nanosponges complexes can be proposed as a suitable controlled release drug delivery for Gabapentin.

Acknowledgements

The authors would like to acknowledge the regular counsel of Dr Ashwini R Madgulkar, Principal, AISSMS College of Pharmacy, Pune, India.

Declaration of interest

The authors report no declaration of interest, financial or otherwise regarding this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.