1,390
Views
17
CrossRef citations to date
0
Altmetric
Non-themed Articles

Statistical comparison of dissolution profiles

, , &
Pages 796-807 | Received 12 Jan 2015, Accepted 24 Jul 2015, Published online: 20 Aug 2015
 

Abstract

Statistical methods to assess similarity of dissolution profiles are introduced. Sixteen groups of dissolution profiles from a full factorial design were used to demonstrate implementation details. Variables in the design include drug strength, tablet stability time, and dissolution testing condition. The 16 groups were considered similar when compared using the similarity factor f2 (f2 > 50). However, multivariate ANOVA (MANOVA) repeated measures suggested statistical differences. A modified principal component analysis (PCA) was used to describe the dissolution curves in terms of level and shape. The advantage of the modified PCA approach is that the calculated shape principal components will not be confounded by level effect. Effect size test using omega-squared was also used for dissolution comparisons. Effects indicated by omega-squared are independent of sample size and are a necessary supplement to p value reported from the MANOVA table. Methods to compare multiple groups show that product strength and dissolution testing condition had significant effects on both level and shape. For pairwise analysis, a post-hoc analysis using Tukey’s method categorized three similar groups, and was consistent with level-shape analysis. All these methods provide valuable information that is missed using f2 method alone to compare average profiles. The improved statistical analysis approach introduced here enables one to better ascertain both statistical significance and clinical relevance, supporting more objective regulatory decisions.

Acknowledgements

This work is part of a research program in Engineering Research Center for Structured Organic Particulate Systems (CSOPS) at Rutgers University.

Declaration of interest

The authors report no conflicts of interest. The authors would like to thank Dr. German Drazer for his helpful discussions, and National Science Foundation (NSF/AIR Award# 1237873) for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.