200
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of a directly correlated Raman and uHPLC-MS content uniformity method for dry powder inhalers through statistical design, chemometrics and mathematical modeling

, &
Pages 1515-1523 | Received 28 Aug 2015, Accepted 27 Jan 2016, Published online: 09 Mar 2016
 

Abstract

Context: Content uniformity (CU) is a critical quality attribute measured and monitored throughout the development and commercial supply of pharmaceutical products. Traditional high-performance liquid chromatography (HPLC) methods are time-consuming in both sample preparation and analysis. Thus, a rapid, nondestructive and preparation free spectroscopy based method such as Raman is preferred.

Objective: Multiple mathematical algorithms were used to establish robust and directly correlated Raman and ultra-HPLC-mass spectrometry (uHPLC-MS) CU methods for the rapid analysis of blends and agglomerates formulated for dry powder inhalers (DPIs).

Materials and Methods: Model samples included blends of caffeine and lactose; albuterol and lactose; and albuterol and lactose agglomerates. Design of experiments (DoE) was employed to optimize Raman spectra. Multivariate curve resolution (MCR) was leveraged to assess Raman method robustness. Mathematical modeling provided direct method to method correlation by allowing samples to be scanned first for Raman spectra and then dissolved for uHPLC-MS analysis. Several chemometric models were developed and evaluated for the quantitative analysis of CU.

Results: The DoE revealed Raman power and exposure time were negatively correlated when optimizing albuterol and caffeine spectra but positively correlated for lactose. MCR revealed regions in which small changes to power and time resulted in an 8–10% change in concentration predictions. A PCR model worked well for the analysis of caffeine blend samples and a PLS model worked best for both albuterol blends and agglomerates.

Discussion and Conclusion: Utilization of DoE, chemometrics and mathematical modeling provided a robust and directly correlated CU method for DPIs.

Disclosure statement

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.