655
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Features of the biotechnologically relevant polyamide family “cyanophycins” and their biosynthesis in prokaryotes and eukaryotes

, &
Pages 153-164 | Received 24 Feb 2014, Accepted 16 Jun 2014, Published online: 30 Sep 2014
 

Abstract

Cyanophycin, inclusions in cyanobacteria discovered by the Italian scientist Borzi in 1887, were characterized as a polyamide consisting of aspartic acid and arginine. Its synthesis in cyanobacteria was analyzed regarding growth conditions, responsible gene product, requirements, polymer structure and properties. Heterologous expression of diverse cyanophycin synthetases (CphA) in Escherichia coli enabled further enzyme characterization. Cyanophycin is a polyamide with variable composition and physiochemical properties dependent on host and cultivation conditions in contrast to the extracellular polyamides poly-γ-glutamic acid and poly-ε-l-lysine. Furthermore, recombinant prokaryotes and transgenic eukaryotes, including plants expressing different cphA genes, were characterized as suitable for production of insoluble cyanophycin regarding higher yields and modified composition for other requirements and applications. In addition, cyanophycin was characterized as a source for the synthesis of polyaspartic acid or N-containing bulk chemicals and dipeptides upon chemical treatment or degradation by cyanophycinases, respectively. Moreover, water-soluble cyanophycin derivatives with altered amino acid composition were isolated from transgenic plants, yeasts and recombinant bacteria. Thereby, the range of dipeptides could be extended by biological processes and by chemical modification, thus increasing the range of applications for cyanophycin and its dipeptides, including agriculture, food supplementations, medical and cosmetic purposes, synthesis of the polyacrylate substitute poly(aspartic acid) and other applications.

Declaration of interest

The authors report no declarations of interest.

Supplementary material available online Supplementary Table S1–S5, Figure S1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.